Skip to main content

Enterprise Application Model in Java

 Enterprise Application Model in Java

The Enterprise Java BluePrints for the J2EE platform describe the J2EE application model and best practices for using the J2EE platform. Building on the J2SE platform, the J2EE application model provides a simplified approach to developing highly scalable and highly available internet or intranet based applications.

Thanks to the J2EE application model, maybe the most interesting thing about J2EE applications is what they don't do. That is, various complexities inherent in enterprise applications -- transaction management, life-cycle management, resource pooling -- are built into the platform and provided automatically to the components it supports. Component and application developers are free to focus on specifics such as business logic and user interfaces.

Another advantage of the J2EE platform is that the application model encapsulates the layers of functionality in specific types of components. Business logic is encapsulated in Enterprise JavaBeans (EJB) components. Client interaction can be presented through plain HTML web pages, through web pages powered by applets, Java Servlets, or JavaServer Pages technology, or through stand-alone Java applications. Components communicate transparently using various standards: HTML, XML, HTTP, SSL, RMI, IIOP, and others.

Reusable J2EE components mean competitive choices for enterprise developers and IT organizations. The J2EE platform enables them to assemble applications from a combination of standard, commercially available components and their own custom components. From general business application components to vertical market solutions, a range of standardized J2EE functionality is available off the shelf.

This means that an e-commerce site could be built using a combination of off-the-shelf EJB components for shopping cart behaviors, modified EJB components for specialized customer services, and completely customized layouts using JavaServer Pages technology that bring a unique look and feel to the site.

This approach means faster development time, better quality, maintainability and portability, and Web services interoperability across a range of enterprise platforms. The bottom line benefits are increased programmer productivity, better strategic use of computing resources, and greater return on an organization's technology investments.


s technology investments.

Containers and Connectors: Hiding Complexity, Enhancing Portability

The J2EE application model divides enterprise applications into three fundamental parts: components, containers, and connectors. Components are the key focus of application developers, while system vendors implement containers and connectors to conceal complexity and promote portability.

Containers intercede between clients and components, providing services transparently to both, including transaction support and resource pooling. Container mediation allows many component behaviors to be specified at deployment time, rather than in program code.

Connectors sit beneath the J2EE platform, defining a portable service API that communicates with existing enterprise vendor offerings. Connectors promote flexibility by enabling a variety of implementations of specific services. In particular, connectors implementing pluggable messaging contracts enable bidirectional communication between J2EE components and enterprise systems.

Flexible User Interaction

The J2EE platform provides choices for graphical user interfaces across a company's intranet or on the World Wide Web. Clients can run on desktops, laptops, PDAs, cell phones, and other devices. Pure client-side user interfaces can use standard HTML and Java applets. Support for simple HTML means quicker prototypes, and support for a broader range of clients. Additionally, the J2EE platform supports automatic download of the Java Plug-in to add applet support where it's lacking. The J2EE platform also supports stand-alone Java application clients.

For server-side generation of dynamic content, the J2EE platform supports two types of web component technologies: Java Servlets and JavaServer Pages (JSP). Java Servlets enable developers to easily implement server-side behaviors that take full advantage of the power of the rich Java API. JavaServer Pages technology combines the ubiquity of HTML with the power of server-side dynamic content generation. The JSP 2.0 specification supports static templates, simplified access to Java objects, and easy extensibility.

Enterprise JavaBeans Component Model

Enterprise JavaBeans (EJB) technology enables a simplified approach to multitier application development, concealing application complexity and enabling the component developer to focus on business logic.

EJB technology gives developers the ability to model the full range of objects useful in the enterprise by defining several types of EJB components: session beans, entity beans, message-driven beans. Session beans represent behaviors associated with client sessions -- for example, a user purchase transaction on an e-commerce site. Session beans can serve as Web service endpoints. Entity beans represent collections of data -- such as rows in a relational database -- and encapsulate operations on the data they represent. Entity beans are intended to be persistent, surviving as long as the data they're associated with remains viable. Message-driven beans allow J2EE applications to process messages asynchronously. A message-driven bean normally acts as a JMS message listener, which is similar to an event listener except that it receives JMS messages instead of events. The messages may be sent by any J2EE component--an application client, another enterprise bean, or a Web component--or by a JMS application or system that does not use J2EE technology.

Web Services Interoperability

The Java 2 Platform, Enterprise Edition version 1.4 is the most complete Web services platform ever. The platform features Web services support through the new JAX-RPC 1.1 API, which provides service endpoints based on servlets and enterprise beans. JAX-RPC 1.1 provides interoperability with Web services based on the WSDL and SOAP protocols. The J2EE 1.4 platform also supports the Web Services for J2EE specification, which defines deployment requirements for Web services and utilizes the JAX-RPC programming model. In addition to numerous Web services APIs, the J2EE 1.4 platform also features support for the WS-I Basic Profile 1.0. This means that in addition to platform independence and complete Web services support, the J2EE 1.4 platform offers platform Web services interoperability.

Expediting Development and Deployment

Based on these flexible component configurations, the J2EE application model means quicker development, easier customization and greater ability to deploy powerful enterprise applications. And, because it's based on the Java programming language, this model enables all J2EE applications to achieve all the benefits of Java technology: scalability, portability, and programming ease.


 

Comments

Popular posts from this blog

Best digital marketing in Perth

Best digital marketing in Perth Introduction Your introduction into the brave new world of the digital space will be custom-tailored to your business needs requirements. You will be introduced to the crew who will be handling your project, from inception to the launch into the market. Assess It will be our job to not only know your customers but how they engage with the core products and  brand relationships . From here we break down what we research, to identify the core elements needed to engage the customer. Create It’s imperative that the design of your vessel is done right from the start. Its shape, level of focus, and attention to detail are crucial for a prosperous, lucrative, and extended journey. We will always present concepts and suggestions as per the requirement, but we truly believe this process should be a collaborative one between the creative crew of the PWD and the client. The final form will dictate its progression into the  development  and manufacturi...

The Ultimate Guide to Pay-Per-Click (PPC) Advertising

  The Ultimate Guide to Pay-Per-Click (PPC) Advertising Introduction In the fast-paced digital marketing world, businesses strive to maximize their online presence and reach their target audiences effectively. One of the most potent tools in their arsenal is Pay-Per-Click (PPC) advertising. This advertising model has revolutionized how companies attract and engage potential customers. This comprehensive guide will delve deep into PPC advertising, exploring its benefits, strategies, and best practices to help you harness its power for your business. What is Pay-Per-Click (PPC) Advertising? PPC advertising is an online marketing model where advertisers pay a fee each time their ad is clicked. Essentially, it's a way of buying visits to your site rather than earning them organically. PPC ads are displayed on search engines, social media platforms, and websites, targeting specific keywords and demographics. The Mechanics of PPC Understanding the mechanics of PPC is crucial for creating...

WHAT ARE NEURAL NETWORKS? | Comingfly

WHAT ARE NEURAL NETWORKS ? Neural Networks the process of machine learning are neural networks. These are brain-inspired networks of interconnected layers of algorithms, called neurons, that feed data into each other, and which can be trained to carry out specific tasks by modifying the importance attributed to input data as it passes between the layers. During training of these neural networks, the weights attached to different inputs will continue to be varied until the output from the neural network is very close to what is desired, at which point the network will have 'learned' how to carry out a particular task. A subset of machine learning is deep learning, where neural networks are expanded into sprawling networks with a huge number of layers that are trained using massive amounts of data. It is these deep neural networks that have fueled the current leap forward in the ability of computers to carry out task like speech recognition and computer vision. T he...

Difference between loc() and iloc() in Pandas DataFrame

  Difference between loc() and iloc() in Pandas DataFrame Pandas library of python is very useful for the manipulation of mathematical data and is widely used in the field of machine learning. It comprises many methods for its proper functioning.  loc()  and  iloc()  are one of those methods. These are used in slicing data from the Pandas DataFrame. They help in the convenient selection of data from the DataFrame. They are used in filtering the data according to some conditions. The working of both of these methods is explained in the sample dataset of cars. loc()  :  loc()  is label-based data selecting method which means that we have to pass the name of the row or column which we want to select. This method includes the last element of the range passed in it, unlike  iloc() .  loc()   can accept the boolean data unlike  iloc()  .  iloc() :  iloc( )  is an indexed-based selecting method which means that we ...

What is Cyber Security | Comingfly

What is Cyber Security The Cyber security or information technology security are the techniques of protecting computers, networks, programs and data from unauthorized access or attacks that are aimed for exploitation. Description:  Major areas covered in cyber security are: 1)  Application Security 2)  Information Security 3)  Disaster recovery 4)  Network Security Application security encompasses measures or counter-measures that are taken during the development life-cycle to protect applications from threats that can come through flaws in the application design, development, deployment, upgrade or maintenance. Some basic techniques used for application security are:  a)  Input parameter validation,  b) User/Role Authentication & Authorization,  c)  Session management, parameter manipulation & exception management, and  d)  Auditing and logging. Information security protects information from unauthori...