Classification of Machine Learning
Machine learning implementations are classified into three major categories, depending on the nature of the learning “signal” or “response” available to a learning system which is as follows:-
- Supervised learning: When an algorithm learns from example data and associated target responses that can consist of numeric values or string labels, such as classes or tags, in order to later predict the correct response when posed with new examples that comes under the category of Supervised learning. This approach is indeed similar to human learning under the supervision of a teacher. The teacher provides good examples for the student to memorize, and the student then derives general rules from these specific examples.
- Unsupervised learning: Whereas when an algorithm learns from plain examples without any associated response, leaving to the algorithm to determine the data patterns on its own. This type of algorithm tends to restructure the data into something else, such as new features that may represent a class or a new series of un-correlated values. They are quite useful in providing humans with insights into the meaning of data and new useful inputs to supervised machine learning algorithms.
As a kind of learning, it resembles the methods humans use to figure out that certain objects or events are from the same class, such as by observing the degree of similarity between objects. Some recommendation systems that you find on the web in the form of marketing automation are based on this type of learning. - Reinforcement learning: When you present the algorithm with examples that lack labels, as in unsupervised learning. However, you can accompany an example with positive or negative feedback according to the solution the algorithm proposes comes under the category of Reinforcement learning, which is connected to applications for which the algorithm must make decisions (so the product is prescriptive, not just descriptive, as in unsupervised learning), and the decisions bear consequences. In the human world, it is just like learning by trial and error.
Errors help you learn because they have a penalty added (cost, loss of time, regret, pain, and so on), teaching you that a certain course of action is less likely to succeed than others. An interesting example of reinforcement learning occurs when computers learn to play video games by themselves.
In this case, an application presents the algorithm with examples of specific situations, such as having the gamer stuck in a maze while avoiding an enemy. The application lets the algorithm know the outcome of actions it takes, and learning occurs while trying to avoid what it discovers to be dangerous and to pursue survival. You can have a look at how the company Google DeepMind has created a reinforcement learning program that plays old Atari video games. When watching the video, notice how the program is initially clumsy and unskilled but steadily improves with training until it becomes a champion. - Semi-supervised learning: where an incomplete training signal is given: a training set with some (often many) of the target outputs missing. There is a special case of this principle known as Transduction where the entire set of problem instances is known at learning time, except that part of the targets are missing.
Comments
Post a Comment
If you have any doubts, Please let me know